
COE Database Concepts

DII COE I&RTS: Rev 2.0 October 23, 1995 4-1

4.0 COE Database Concepts

The function of a Database Server together with the databases it manages is to
provide information to all users through applications that access the databases,
and to support system and database administrators maintenance functions. The
operations of a database server involve the database server itself, the databases
managed by it, and applications that access one or more databases. The
discussion that follows addresses the operational roles of each.

A COE database server provides data management services to all applications.
In order to be useable it must be a stable, reliable operating environment that
developers can design to. Database services include tools to support the
management, by a site administrator, of users’ discretionary access to databases
based on the applications they are permitted to use. This is governed by the
following principles.

¥ Users will not need access to all applications.

¥ Applications will have multiple levels of database access that can be
granted to users.

¥ When access to an application is granted to or revoked from a user, the
corresponding database permissions are also granted or revoked.

COE databases are a federation of application-owned and common databases.
Application segment developers control the data and structures that are specific
to their segments and can change those data or their structure when necessary.
The common, corporate databases are owned by DISA; their data and structures
are centrally controlled. These databases reside on the Database Server that
provides services to the applications, acting as database clients, within the
network. The databases within a particular database server are isolated from
each other, physically and logically, by being placed in separate storage areas
and by being owned by different DBMS accounts.

This configuration, using the disk controller and drive analogy is shown in
Figure 4-1. The core database configuration, containing the DBMS Data
Dictionary and associated system information is part of the COE and is
represented by the System Database. All other databases, whether provided by
DISA, a developer, or some other agency, are included as ‘component’ databases
under the management of the Database Server. The set of component databases
available from a particular database server is determined by the set of
applications that server’s database is expected to support.



COE Database Concepts

4-2 October 23, 1995 DII COE I&RTS: Rev 2.0

COE Database Server

System
Database

Component
Databases

Figure 4-1: Database Server Architecture

All databases are shared assets, whether they are common or not. They are also
dynamic because their data can change even while structure remains static.
Databases may be interdependent. Databases depend on the COTS DBMS
service and are built within its constraints. Databases can be accessed by
applications other than those written by the database developer. (While most
database applications are usually written by the database’s developers, it cannot
be assumed that this will be the only case.)

Applications that use databases to manage their information are the interface
between users and the data. Some applications use their databases interactively,
in a transaction processing mode, to perform the work for which they have been
designed. Others have a single process that writes data, and many readers. Some
pull data from remote sources to replace existing data the then allow read-only
access to that remotely provided information.

Users connect to the database server through the applications, possibly in
multiple sessions. Each session must behave as if it is isolated from the rest of the
system and knows of no data other than those belonging to the application it is
executing.



Constraints on Database Developers

DII COE I&RTS: Rev 2.0 October 23, 1995 4-3

4.1 Constraints on Database Developers

The developers of databases and applications accessing databases must conform
to the strictures of the COE database server environment so they do not bypass
or corrupt its features. The combination of the database server configuration and
the developers’ implementations must ensure two things. First, each connection
of a user to a database through an application must function in the proper
context for that application and database. Second, each user’s connection to a
database must not interfere with any other user’s connection the same or any
other database.

The development and integration standards for COE databases support an
evolving configuration of database services. In GCCS version 0, each application
has its own database and database management system. Commencing with
GCCS Version 1.1, the separate database servers were replaced by a single server
running a single instance of the database management system (DBMS). Each
application retained ownership of its database within that instance, but shared
the DBMS service with the other applications’ databases. Thus, the database
server provides shared, concurrent access to multiple databases with varying
degrees of autonomy. COE-based systems are to follow the same approach as
that pioneered by GCCS.

The single server, single instance data management service conserves system
resources by not requiring multiple copies of the DBMS to be executing and
eases system management by providing a single point-of-entry for database
management services. That single point of entry also simplifies application
development. The benefits that come with the central service do limit the
freedom of developers by requiring that they implement databases compatibly
with the larger multi-database environment. In addition, the increased
complexity of a multi-database system could overburden the operational sites’
system and database administrators unless it is implemented consistently. This
again limits developers by constraining their databases to function within a
consistent administrative framework.

The principal consideration for developers is that their applications and
databases no longer have exclusive use of the database management system.
Instead of being an application-specific data management tool, the DBMS is a
central service that supports all applications’ databases. As a result, developers
cannot customize or tune the DBMS to the particular behavior of any application.
Any such modifications to the DBMS will inevitably affect other applications
and databases. Similarly, the individual component databases are no longer the
sole occupants of the DBMS. Developers must implement their applications and
component databases so that they do not interfere with others sharing the same
DBMS. Further, because there are multiple databases in the DBMS, applications



Constraints on Database Developers

4-4 October 23, 1995 DII COE I&RTS: Rev 2.0

can connect improperly to other databases. Developers must ensure that their
applications connect only to the database they are intended to use. They must
also design their databases to maintain their own integrity without reference to
external applications.

In order for component databases to plug into and play properly on a Multi-
Database Server, they must conform to the standards defined herein. The
objective is to support the independent development of maintainable databases
that will function reliably within the larger multi-database system.

Developers must implement their databases such that the operational sites’
administrators can manage the collection of databases. If system and database
administrators are required to manage multiple databases, each with its own
integrity rules and access methods, their jobs quickly become impossible. This
means developers must adhere to common implementation methods.



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-5

4.2 Database Integration Requirements

The Database Server is the COE component that provides shared data
management within COE-based systems. Regardless of the COTS DBMS used to
provide database services, its functions within the system remain the same.

• Support independent, evolutionary implementation of databases and applications
accessing databases.

• Manage concurrent access to multiple, independent and autonomous databases.

• Maintain integrity of data stored in the DBMS Server.

• Provide discretionary access to multiple databases.

• Sustain client-server connections independent of the client application’s and
database server’s hosts.

• Support distribution of databases across multiple hosts with replicated data and
with distributed updates.

• Provide maintainability of users’ access rights and permissions.

In addition, database services within the COE are not restricted to a single
vendor’s DBMS. As a result, developers must implement their databases such
that dependence on any particular DBMS vendor’s product is limited. The
discussion that follows provides more detail on each of these general
requirements.

4.2.1 Evolutionary Implementation

The goal of evolutionary implementation is to be able to incrementally develop,
field, and improve software and information services. This “build a little, test a
little, field a lot” philosophy applies to databases as well as applications. In the
database context, the objective is to field the latest and best information
structures and contents. Databases and applications should be able to evolve
independently in principle, but in practice they are not likely to because of the
dependence of applications on the database’s structure. In addition, the
component databases are dependent on the DBMS for their implementation.

Database developers can still support evolutionary implementation by
maintaining the modularity of their component databases. To achieve this goal,
component databases must first coexist within the server without corrupting
each other’s data. This is not requiring databases to be isolated from each other;
it is requiring that all actions across database boundaries be intentional and



Database Integration Requirements

4-6 October 23, 1995 DII COE I&RTS: Rev 2.0

documented. The COE architecture requires that segments not modify other
segments. The same applies to component databases modifying or extending
other database. When a database does have a dependency on some other
component database, that dependency will be kept in a separate segment.

Component databases are dependent on the DBMS used for the database server.
The specific commands used for their implementation within the DBMS, and the
environment it provides are both provided by the DBMS vendor. Database
developers must be careful in their use of vendor-specific features so they do not
create unintended dependencies on specific database management systems or,
more importantly, particular versions of the DBMS while still taking advantage
of the database server's capabilities. To accomplish this, developers shall
separate DBMS-specific code from that which is transportable.

The same constraints on databases also apply to applications accessing those
databases. Application developers must ensure that applications connect
through regular, documented API’s and shall not assume the use of particular
DBMS versions. This does not prohibit developers from using DBMS vendor
supplied tools that are part of the COE.

The key to managing the evolution of component databases and the applications
that use them is documenting their interrelationships. Applications’
dependencies on databases shall be documented so that database version
changes can be tested with the applications. The component database's
dependency on the DBMS will also be documented for the same reason. If
developers use DBMS vendor supplied tools to implement applications, the
dependency on the tools will be documented. When applications or component
databases access data objects belonging to other component databases, the
dependency among the databases shall be documented as well.

As database federation evolves, it is likely that component databases will be
upgraded before applications that access them. When applications are affected
by component database modifications, legacy views may be provided as
directed by the DISA Chief Engineer. Such views will be read-only, but can
allow query tools to continue to function until they are modified to work with
the re-engineered database.

4.2.2 Managing Multiple Databases

As stated earlier, the COE database architecture is that of a federation of
databases with varying degrees of autonomy. Federated means that the
component databases are co-located and share DBMS resources. They process
data cooperatively but are not part of an overall schema. In some cases they may
also share or exchange data. Autonomous means that each database remains an



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-7

independent entity. Individual databases may be modified or upgraded without
reference to others. They are also responsible for maintaining their own data
access and update rules.

The federated architecture provides the same modularity within the Database
Server that mission application segmentation does for the user interface. The set
of databases available from any particular database server is tailored to the
information needs of the individuals using that server. Databases that are not
needed can be omitted.

In order for this to work, each component database must be implemented in a
self contained manner. This is not to say that a database supporting a set of
applications should be self-sufficient. One goal of the modular database
implementation is to limit the redundancy of information among component
databases. Developers should not incorporate information in component
databases that is already available from other, existing databases.

4.2.3 Data Integrity

Data integrity addresses the protection of the information stored within a
database management system. There are three general circumstances that must
be addressed. First is the prevention of accidental entry of invalid data. Second
is the security of the database from malicious use. The third is the protection of
the database from hardware and software failures that may corrupt data. The
implementation of appropriate data integrity measures is the responsibility of
the database developers using the features of the DBMS.

The Database Server is responsible for preserving the integrity of each
component database and for preventing connections between an application and
data that belong to any other application. COE-based systems are typically
secure systems that contain and process classified data. The database
management component must conform to the security policies and practices of
the overall program. Otherwise, the database server supports the data access
restrictions and integrity assumptions incorporated in each database.

The Database Server provides the basic functionality expected of a DBMS. It
ensures the recoverability of failed transactions or of a crashed system. The
atomicity, concurrency, isolation, and durability of database transactions are the
responsibility of the applications accessing the server. However, supporting
these transaction properties is the server’s responsibility. Developers must pay
special attention to transaction isolation because of the multi-database
configuration of most COE-based systems.



Database Integration Requirements

4-8 October 23, 1995 DII COE I&RTS: Rev 2.0

Database developers are responsible for defining and implementing the integrity
constraints of their databases. The Database Server is responsible for enforcing
the developers integrity constraints when they are defined within the database.
Application developers must ensure that their applications connect properly to
their databases and do not connect improperly to anyone else’s databases.
Adoption of these practices protects all applications’ data and allows the
database server to maintain all databases reliably.

Within a component database implementation data integrity takes the form of
what are often called constraints and business rules. In the current context,
constraints are defined as the rules within the database that govern what values
may exist in an object. Business rules are those rules within the database that
govern how data is updated and what actions are permitted to users.

There are two flavors of constraints. The first type of constraint is structural; it
concerns such things as the uniqueness of a primary key field or the equality of
foreign key fields between records in different data objects. The second type of
integrity constraint addresses the values permitted in data fields. It may restrict
the values in a field to a certain numeric range or a list of permitted key words.
It may assert relationships (e.g. arithmetic) among multiple fields.

Business rules are also constraints, but have more to do with the information
than the data object. A simple rule might require that an entry be written to an
audit table each time a record in some table is inserted, updated, or deleted.
Another rule might require information to be transferred from one site's
database to one or more other sites when certain combinations of actions take
place or after a specified time period.

Until recently, commercial database management systems were limited in their
ability to support the variety of constraints and business rules that may be
needed in a database. As a result, most of the constraints and business rules of
databases have been implemented in the applications, not the database. Because
of the federated database architecture and because the applications that maintain
those databases are developed independently, it is difficult to ensure uniform
and consistent enforcement of those rules and constraints.

Developers shall place their business rules and constraints in their databases
rather than their applications. This keeps control of data maintenance access in
the hands of the developers where it belongs and ensures that constraints cannot
be bypassed. Developers have the knowledge of their constraints and business
rules; DBA’s and users do not.

The reason for placing constraints in the database is shown in Figure 4-2.
Application One and its associated component database were implemented with
business rules and constraints in the application. Application Two placed those



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-9

constraints in the database. When a third application accesses both databases, it
is unaware of Database One's business rules because they are inaccessible. If this
application, which could be a user-developed query tool, modifies Database
One, it could corrupt the database out of ignorance.

Data Tables Accessed by Applications

Application 1Application 1 Application 2Application 2

Business
Rules Constraints

Business
Rules Constraints

Constraints Constraints

BROWSER

Figure 4-2: Business Rules and Constraints

Placing business rules and constraints in the database promotes client-server
independence. The efficient implementation of constraints and business rules
will have to make use of the DBMS's capabilities. If these rules are in the
component database, the application is less dependent on the COTS product.
Also, this approach reduces network communications loading by allowing the
DBMS, rather than the application, to enforce the rules. Checking rules within
the database avoids passing multiple queries and their results over the network
between the DBMS and the application.

4.2.4 Discretionary Access

Discretionary access addresses the selective connection of users to databases
through applications. Database access is discretionary because not all users have
the same permissions to use applications. The objective is to ensure that users'
database connections operate in the proper context for the applications. Users
must be able to operate several different applications at the same time. The
DBMS server must effect each application’s accesses to different sets of data
objects. This means permission to access to specific tables and the mode (read or
write) of that access. Because several databases may exist on the Database Server,



Database Integration Requirements

4-10 October 23, 1995 DII COE I&RTS: Rev 2.0

each application must be written to access only the database it belongs with; it
must be unable to access tables belonging to some other application. Each user-
application connection have only the permissions needed for that context.

There are three components to this issue: Session Management, Discretionary
Access Control, and Access Management. The first refers to the DBMS’ ability to
keep different connections separate. The second addresses the context of an
individual connection. The third deals with the requirements of system and
database administrators to manage the accesses that are provided to users.
Without the correct functioning of all three components, data integrity and
consistency can be compromised.

In order for this system to be useable, it must provide support to systems
administrators as they manage users’ discretionary access to subsets of
applications and databases.

4.2.4.1 Session Management

A session is an individual connection between an application and the database
management system. It is the means by which the database server isolates one
user's activities working with an application from all other users that are
connected to the DBMS. In this context autonomous applications such as
message parsers are also database users.

The Database Server is responsible for session management as shown in
Figure 4-3. In this example, two users are connected to the database server. The
first has two sessions with application A and one with application B. The second
has a session with application B and one with application C. The database server
maintains five separate sessions. Two sessions are connected to component
database A, two to component database B, and one to component database C; no
session is connected to component database D.

Note that each different execution of an application is considered a separate
session and is functionally isolated from other executions of the same
application. Thus, when User 1 starts two separate instances of application A, the
DBMS treats them as different sessions (A1 and A2). This ensures that changes
being made in different sessions propagate correctly and do not corrupt data
accessed by other sessions.

The key points with respect to session management are that the DBMS, in
managing connections, provides sessions and isolates each one from all others.
Isolation sustains transaction management and system recovery. It also supports
the traceability of database transactions to the user and application.



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-11

A1
B1

A2

User's Workstations

DBMS

Database Server

B2

C

Listener Processes

A1 A2 B1 B2 C

A B C D
Component Databases

Figure 4-3: Session Management

4.2.4.2 Discretionary Access Control

Discretionary access control is used to manage users' permissions to employ
applications to access or modify data managed by the database server. It has a
broader scope than information security. Security is focused on whether users
are permitted to know about and allowed to view certain information.
Discretionary control of access deals not only with users' permissions to change
information but also the context in which they are permitted to make changes.
Users will have access to multiple databases through many different
applications. Their overall database permissions are the union of the permission
sets of the individual applications they have the right to use.

Figure 4-4 illustrates the need for discretionary access. A user has three database
sessions active, one with each of three different applications. Each application
accesses a different set of objects within the database. The data objects shown
represent all objects that user has permission to access and are marked to show
which application context is relevant to that access. If all of the user's database
permissions were active at all times, it would be possible for one or another of
the applications to access and modify data that is not relevant to it. Instead, each
application must only be able to access its corresponding data objects.

It is the responsibility of database and application developers to provide
discretionary access controls. The operational sites' administrators are
responsible for using those controls when assigning database and application
privileges to users. Session management by the DBMS provides the database and



Database Integration Requirements

4-12 October 23, 1995 DII COE I&RTS: Rev 2.0

application developer the isolation needed to implement discretionary access.
When designing access controls the following principles apply:

• Users shall have unique accounts within the DBMS. Those accounts shall have
only the database permissions needed for their work

• A user's database permissions will only be active within the context of the current
application and database session. In other words, when a user starts a database
session through some application, that session will only be able to access the data
objects appropriate to the application and the only active permissions on those
objects will be those appropriate to that application's use of those objects.

Application 1

Application 2

Application 3

User-Accessible Data Tables

Figure 4-4: Functional Context

These context specific controls are necessary because users will have access to
multiple applications and each application has its own set of database
permissions. As a user is granted access to data objects based on the applications
that he/she needs to use, the total set of database grants for that user expands.
The DBMS manages sessions at the user account level, so each user has all
granted permissions on all objects whether they are relevant to the current
session or not. If access were not dependent on context, users could have
inappropriate permissions for a particular session. For example, a user might be
able to write to a data table that is supposed only to be read by the current
application. Such pathological connections to data objects will, almost inevitably
lead to data corruption.

The context in which an application operates on the database is the application's
"database role." A database role is the minimal set of database permissions



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-13

needed for an application to function correctly. Since these roles are linked to the
application, their definition is the responsibility of the application developer.
However, the roles are implemented within the database so they become part of
the database segment.

4.2.4.3 Access Management

Access management addresses the work of system and database administrators
giving users the permissions they need. They must be able to connect users to
applications and to databases. They must also be able to revoke or modify those
connections as users transfer or assume different responsibilities. The large
number of applications and databases available within COE-based systems
could make the administrators' tasks unmanageable if access management is not
supported with the proper tools. This section discusses the developers'
responsibilities for supporting access management.

The act of adding an application to a user’s access list, menu, or whatever,
entails the adding of associated database permissions to that user’s DBMS
account. Similarly, revoking access to an application requires that corresponding
privileges be revoked within the DBMS. Users must have the proper permissions
on both the application and the database, so the two system activities are
interdependent. Access to applications will often be granted in logical sets or
groups of related applications. As discussed in the previous section, access to
databases must be linked to each individual application or the functional context
of the application is lost.

The grant association process is illustrated in Figure 4-5. A user is being given
permission to use three applications. As a part of that process, the user must also
be assigned the database roles associated with those applications. Through the
database roles, the user receives the permissions on the data objects needed to
use the applications. If, later, the user no longer needs to use these applications,
the administrators can reverse the process. When the application permission is
revoked, the database roles are withdrawn from the user. The other reason for
managing database roles at the application level can also be seen here. Assume
that these applications represent a group that are accessed together and that have
identical database permissions. If the grouping of applications changes at some
point, the collective role might not be valid. In addition, if there is not a one-to-
one correspondence between applications and database roles, it becomes
impossible to determine when a database role should be revoked.



Database Integration Requirements

4-14 October 23, 1995 DII COE I&RTS: Rev 2.0

Role 1Role 1
Role 2Role 2

Role 3Role 3

Role 1Role 1
Role 2Role 2

Role 3Role 3
Associated Roles & Data TablesAssociated Roles & Data Tables

Application 1

Application 2

Application 3

Application 1

Application 2

Application 3

Figure 4-5: Grant Association Process

Database application developers are the only ones with comprehensive
knowledge of interactions with the database. They must define the database
roles and provide the scripts or command sets that create them for inclusion in
the database segment. The scripts that grant and revoke database roles are part
of the application segment. This allows them to be executed by the system’s
administrators when they are managing access to the applications.

4.2.5 Supporting Multi-Database Tools

Access to multiple database is one of the major benefits that the COE brings to its
users. Database browser tools, such as APPLIX, allow users to construct ad hoc
queries that span different subject areas and that are not supported by mission-
specific applications. At the same time, however, such multi-database
applications present special problems in the COE context. If the databases were
read-only, browsers would not cause problems. However, many databases are
designed to be maintained interactively using the applications associated with
them. This means that users will have permission to write to databases. Those
write permissions are potentially active when a user is using a database browser
which means that the browser tool can also write to COE databases. Since the
browser is independent of the applications designed for particular databases, it
will be ignorant of any constraints or business rules that are in those
applications. Thus it could corrupt data due to its ignorance of the rules.

The key to ensuring database integrity in this case (as in all others) is the
enforcement of constraints and business rules within the database. If the rules
are part of the database, they cannot be bypassed.



Database Integration Requirements

DII COE I&RTS: Rev 2.0 October 23, 1995 4-15

The second issue is one of understanding the context of a particular database.
When users formulate queries that span multiple databases, they are likely to
encounter differences in the way information is represented among those
databases. This could lead the users to draw erroneous conclusions from their
query results because they do not understand the differences between the
databases. To limit the chances of this, component database developers shall
provide comprehensive information on their databases to be incorporated in the
DBMS data dictionary. This information is part of the database segment.

4.2.6 Client-Server Independence

The COE uses a client-server architecture. This applies to database services as
well. Developers must preserve the independence of their applications,
functioning as DBMS clients, from the database server. Specifically, applications
that access databases must not be built so that they have to reside on the
database server in order to work correctly. It cannot be assumed that all
operational sites will have a local database server. Further, where sites have a
local database server it may be on a separate machine hosting that is dedicated
to the DBMS, or the server may be co-located with the application on a single
machine acting as the application server and the database server. To maintain
independence and support the client-server architecture, applications cannot
assume they reside on the database server.

To sustain the independence between DBMS clients and the database server,
developers must not mix extensions to the DBMS with their databases and must
separate the database from the applications that use it. If specialized data
management services are needed by particular applications and are not part of
the COE's database services, the provision of such services must be approved by
and coordinated with the DISA Chief Engineer.

For example, assume some application needs a COTS expert system shell to
manage a knowledge base that is a component of the application and that it
interacts with the database server. The expert system shell, to work properly, has
to be co-located with the DBMS. The expert system then becomes a segment that
is separate from the application that uses it.

4.2.7 Distributed Databases

A distributed database is one whose data are spread across multiple sites. Data
are replicated in a distributed database when copies of particular objects or
records exist in more than one of those sites. Data are fragmented when they are
split among sites. Databases are distributed (fragmented or not) to improve
responsiveness and increase availability in systems that serve geographically



Database Integration Requirements

4-16 October 23, 1995 DII COE I&RTS: Rev 2.0

dispersed communities. Databases are replicated to enhance their survivability
in the same circumstances. In either case, one implementation objective of any
distributed database is to provide location transparency. This means that the
user need not know where data are located to be able to access or work on them.

Depending on the component database, the COE supports several flavors of
distributed databases. Some current databases are relatively static and are
replicated at multiple sites, but exist independently. They are updated through
the periodic replacement of information at each site that has a copy. Others, such
as the JOPES Core Database, are dynamic and are replicated concurrently across
several sites for survivability. They use transactions to effect updates across the
affected sites.

The COE provides distributed database management services for the developers
of distributed databases so they can maintain location transparency and
distributed transaction processing. The specific services implemented for a
particular COE database system will depend upon the nature of its distributed
data. GCCS, for example, uses an asynchronous transaction model. A financial
system may require the use of the more restrictive, but synchronous, two-phase
commit.

The technology that supports the distribution of databases as used in the DII
COE is evolving rapidly. Accordingly, the GCCS program does not, at present,
prescribe a particular implementation method. Developers of distributed
databases must coordinate their activities with the DISA Chief Engineer to
ensure that their approach can be supported and is consistent with the objectives
of the broader program. When a distributed database is implemented,
developers should keep in mind that the distribution plan (fragmentation
schema) may change over time. Distribution methods and the tools used to
support them will also evolve as technology matures. Where developers are
assigned responsibility for database fragmentation schemas, each fragment shall
be in a separate segment so different schemas can be implemented.

The distribution of data also means that users potentially have access to multiple
database servers. The assignment of users to servers will depend on the
distribution schema as implemented for the various sites. The Sites’ DBAs are
responsible for aiming users’ processes at the correct database server.
Developers shall not assume that users are attached to a particular server.
Developers’ applications shall not modify the user’s DBMS environment to
associate them with a particular database server.



Guidelines for Creating Database Objects

DII COE I&RTS: Rev 2.0 October 23, 1995 4-17

4.3 Guidelines for Creating Database Objects

This section provides guidelines for developers in creating their database
segments. Its objective is to support consistency across different databases and
improve the mutual independence of the database federation.

4.3.1 Database Accounts

Three categories of database accounts have been defined within the COE: DBA’s,
Owners, and Users. They have different functions and levels of access to the
DBMS based on those functions.

4.3.1.1 Database Administrators

The Database Administrator (DBA) accounts have access to all parts of the
DBMS. They are to be used only for system administration. Their use by
database server segments is prohibited except during the installation process as
discussed above.

4.3.1.2 Database Owners

These accounts are the creators and owners of the data objects that make up an
application server segment. The name must be unique within the COE
community. Developers will normally use the segment name or a variant of it as
the owner account name. Owners accounts must have their password changed
after a database installation. Users shall not use the owner accounts to connect to
databases.

4.3.1.3 Users

User accounts belong to the individuals accessing databases Each individual
must have his/her own unique user account. Creation and maintenance of user
accounts is a site DBA responsibility. Developers shall not assume the existence
of particular users and shall not create user accounts.

4.3.2 Physical Storage

Database management systems provide file management transparency across
multiple host computer systems by hiding the details of file storage from the
database’s data objects. At the same time, however, the placement of data objects
on physical storage devices has an impact on system and database performance
due to disk contention and other file system access issues.



Guidelines for Creating Database Objects

4-18 October 23, 1995 DII COE I&RTS: Rev 2.0

4.3.2.1 Data Store/File Standards

Data can usually be grouped into logical sets based on the source, type of
information or use of the data. These logical sets of data are defined as a data
store. An application’s data will normally be a single logical set and hence one
data store. Its name will be an identifier for the data store. GSORTS is an
example data store name.

The data store identifier will be used as the database schema name to clearly
identify the logical set of information. This same identifier will also be the owner
account name.

Developers will provide the scripts to create their DBMS storage and the
operating system files associated with them. The files will be created in the
DBS_files subdirectory of the application server segment’s directory tree.

4.3.2.2 Data Storage Standards

Developers should define one or more storage areas for their database segments.
The objective is to allow DBAs to place data files on separate physical storage
devices based on the tablespace’s use within the DBMS. Storage area names will
be meaningful and a maximum of 30 characters (letters, numbers, and
underscores). The name is not case sensitive. No DBMS reserved words shall be
used.

Storage area names must also be associated with the segment and data store
identifier. Most applications will have either two or three storage areas: Data,
Indexes, and (if needed) Static data. The following naming convention is to be
used: <segment prefix>_DATA, <segment prefix>_INDEX, and
<segment prefix>_STATIC for the three storage areas respectively.

One or more data files may be created to support each storage area. The data file
names should be chosen so they are clearly associated with the tablespace. The
recommended naming convention is <segment prefix>_<store
type><n>.dbf where ‘store type’ is the storage area’s purpose (e.g. index) and
‘n’ is a one-up serial number for the file. An example would be
gsorts_data1.dbf.

4.3.3 Database Objects

The definition of a database schema – the set of data objects, their
interrelationships, constraints, and rules for access or update – is the
responsibility of the developers. Developers shall not duplicate data objects that
are part of the corporate databases provided by DISA. Where possible and



Guidelines for Creating Database Objects

DII COE I&RTS: Rev 2.0 October 23, 1995 4-19

appropriate, developers shall take advantage of and share objects belonging to
other databases within GCCS. To this end, developers shall provide the
definitions of their schema components for inclusion in the DBMS data
dictionary.

Developers shall provide DISA with their proposed database schema early in the
segment design process. The schema will be reviewed for duplication of objects
in other component databases.

4.3.3.1 Database Tables

Table names will be meaningful and a maximum of 30 characters. If Oracle
database snapshots are being used for data replication services for other sites,
developers should limit the table name to 24 characters. Oracle uses six
characters to identify a database snapshot.

4.3.3.2 Data Elements

Data element names will comply with DISA/JIEO or DIA standards where
applicable. Within a schema developers should use the same data type, size, etc.,
for all occurrences of the same name. If elements are chosen from Joint
standards, they shall use the data type and units of measure prescribed in the
standard.

Developers shall not use data types that are machine dependent. This applies
primarily to numeric data. The value ranges of the ‘float’, ‘double’, and ‘real’
data types are machine dependent in both Oracle and Sybase.

4.3.3.3 Database Views

Views are often used to restrict users’ access to vertical or horizontal subsets of
data tables. Current DBMS’s are limited in their ability to support updates
through views. If developers need updateable views, the DBMS’s restrictions
must be kept in mind. If the updateable views are required for security or data
privacy, developers should not grant users access to the base tables, only to the
views.

In general, the following restrictions apply to updateable views.

Horizontal (row-wise) views. Database Servers can support inserts, updates, and
deletes through horizontal views. Such views include those where one table is
used to constrain the view to a subset of rows in another table. Developers are
responsible for implementing appropriate error handling if users try to insert a
row that duplicates a hidden row.



Guidelines for Creating Database Objects

4-20 October 23, 1995 DII COE I&RTS: Rev 2.0



Guidelines for Creating Database Objects

DII COE I&RTS: Rev 2.0 October 23, 1995 4-21

Vertical (columnar) views. Database Servers can support updates and deletes
through vertical views as long as the database constraints do not reference
hidden columns. Inserts can only be supported if all hidden columns are
allowed to be null or if triggers are provided to populate them with default
values. Developers are responsible for implementing appropriate error handling
if a user’s update violates a constraint on a hidden column.

Multi-table views. At present, the Database Servers implemented in the COE
cannot consistently support data modifications through views of more than one
table. Developers should implement such updateable views in applications.
These views should be accompanied by comparable read-only views of the
individual tables.

4.3.3.4 Rules on Database Objects

Rules on database objects incorporate several different concepts. Their
underlying purpose is to maintain database integrity through the enforcement of
the constraints and business rules of the database.

For purposes of this document, the following definitions apply. Constraints are
restrictions on data elements with respect to the values they may contain. For
example, a country code field could be constrained to the set of DIA prescribed
two-character country codes. Business Rules are restrictions that occur in the
context of database operations that affect multiple interrelated objects and
elements or that are beyond the ability of a constraint to express them. For
example, any update to a facilities table may require that an entry be written to
an audit table recording the ID of the user making the change and the time at
which it was made.

Within the Database Server, developers may use DBMS constraints, stored
procedures, or triggers to implement either constraints or business rules.

4.3.3.4.1 Constraints

Developers should define all referential integrity constraints (Primary and
Foreign Keys) that apply to their database schemas. The information in these
constraints is vital for maintaining database integrity. Domain Keys (e.g. the SQL
Check constraint) should be used to maintain the validity of column values.
Unique columns should be constrained rather than indexed. Constraints should
be explicitly named. The names should be meaningful. The recommended
naming convention is <table name>_<cons> where ‘table name’ is the name or
abbreviated name of the table or table and columns involved in the constraint
and ‘cons’ is PK for a Primary Key, FK for a Foreign Key, or CK for a Check
constraint.



Guidelines for Creating Database Objects

4-22 October 23, 1995 DII COE I&RTS: Rev 2.0

In most cases developers will wish to create their constraints after the data fill
has been completed. The implicit index that accompanies a Primary Key or
Unique constraint will slow the data fill significantly. Constraints should not
normally reference data objects that are outside the database segment. See below
for methods to implement inter-database constraints when they are needed.

4.3.3.4.2 Stored Procedures

Stored procedures are used to maintain database integrity or to enforce business
rules when the constraints imposed are too complex for simple SQL constraints.
Procedure names should incorporate their schema’s name and some meaningful
indication of their functions.

Stored procedures should not normally reference data objects that are outside
the database segment. See below for methods to implement inter-database stored
procedures when they are needed.

4.3.3.4.3 Triggers

Most triggers will be used to maintain database integrity. Others may be used to
signal or send data to other, inter-related or dependent database segments.
Trigger names should incorporate their schema’s name, the trigger type, and
some meaningful indication of their functions.

Triggers should not normally reference data objects that are outside the database
segment. Database segments should not install triggers on data objects outside
the segment. See below for methods to implement inter-database triggers when
they are needed.

4.3.3.5 Indexes

Index names will be meaningful without using reserved words. It is
recommended that the index name incorporate a reference to the table and
column for clarity. Small tables should not be indexed. Indexes should not be
used in place of Primary Keys or Uniqueness constraints.

4.3.4 Database Roles

Database roles, in the general sense, simplify the management of user privileges
within the DBMS. They are created by the developer to define sets of access
privileges that can be given to users by their sites’ DBA’s. Their names will be
meaningful and will be chosen to associate with the segment name. Developers
shall provide roles with privileges specific to the applications accessing the



Guidelines for Creating Database Objects

DII COE I&RTS: Rev 2.0 October 23, 1995 4-23

database. Each role shall have only the privileges needed by the application it
supports.

4.3.5 Grants

Grants allow the DBA to administer and the DBMS to enforce the discretionary
access controls required. Developers should grant only the minimum set of
permissions needed for the applications that access their databases. Grants
should be made to roles/groups and not to individual users.

Granting data access to DBMS ‘PUBLIC’ users is prohibited. Granting data
access privileges to user accounts with the ‘GRANT OPTION’ or granting
administration privileges on database roles are prohibited.

4.3.6 Inter-Database Dependencies

Where inter-database dependencies are needed they will be implemented as
database segments that modify the segment owning the object that creates the
dependency. The Requires descriptor must identify dependencies on all
database segments.

4.3.6.1 Data Objects

Names of objects created in other schemas must identify the inter-database
linkage. Developers are responsible for ensuring that their object’s names do not
conflict with those already in the schema.

4.3.6.2 Rules in Other Databases

Names of rules created on other schemas must identify the inter-database
linkage as well as the rule’s function. Developers are responsible for ensuring
that their rule names do not conflict with those already in the schema.


